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1.  INTRODUCTION 

Two previous determinations of the crack nucleation threshold stress ano 
in a low-alloy Ni-Cr steel led to values differing by a factor of 3.4. » 
The present study was initiated to clarify this situation by examining the 
nucleation process in more detail -- especially through investigations of 
cracking at stress levels near the threshold stress and as a function of the 
strength, or extent of tempering, of the steel. 

II.  PROCEDURE 

The material investigated was a low-alloy 0.22C-3Ni-lCr tempered mar- 
tensitic steel, and ano determinations were completed for three different 
rolling and tempering conditions. These corresponded to Brinell hardnesses 
of 270, 320, and 370 and yield strengths CTY of 0.65, 0.80 and 1.02 GPa, 
respectively. 

Partially broken samples were created for investigation with parallel- 
plate impacts (plate-slap tests) accomplished with a light-gas gun. The 
degree of damage in the samples was varied by changing the impact velocity. 
In all tests of a particular material condition, identical impactor and sample 
thicknesses were used to insure approximately the same load duration. 

Crack densities were established with microscopic observations of metal- 
lographically prepared sections of the partially broken samples.  In the 
plate-impact test, the load duration depends on the location in the plate. 
Hence, only voids in the central region -- a strip 0.021 to 0.127 cm wide -- 
of each sample were counted. This insured that voids in the regions investi- 
gated were initiated over approximately equal time intervals.  It also allowed 
the use of data from the low-pressure tests where no noticeable cracking 
occurred in the outer regions of the plates. 

The nucleation threshold stress was determined iteratively by first 
estimating an approximate threshold stress a^0 by extrapolating curves of 
crack density versus the maximum compressive stress to the stress correspond- 
ing to no cracking.  If this resulted in a stress less than the Hugoniot 
elastic limit (HEL), a'  was approximated with the HEL. Subsequently, the max- 
imum tensile stress attained in each test was computed with the one-dimensional 

lL. D.   Bertholf,  L.  D.   Buxton,  B.  J.   Thome,  R.   K.  Byers,  A.   L.   Stevens,  and 
S.   L.   Thompson,   "Damage in Steel Plates from Hypervelocity Impact.  II. 
Numerical Results and Spall Measurement," J.  Applied Phys.   46,  1975,  pp 3776- 
3783. 

2D.   A.  Shockey,  L.  Seaman,  D.  E.   Curran,  P.   S.   DeCarli,  M.  Austin and 
J.  P.   Uilhelm,   "A Computational Model for Fragmentation of Armor Under Ballis- 
tic Impact," Ballistic Research Laboratory Contract Report No.   222,  April 
1975  (U). 

3G.  L.  Moss,  L.  Seaman,   "Nucleation Threshold Stress for the Dynamic Fracture 
of a Low-Alloy Ni-Cr Steel," Mechanics of Materials,   1_,   1982,  pp 87-95. 
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stress wave-propagation computer code PUFF1* with the brittle-fracture sub- 
routine BFRACT1*, and by using a^0 and related material fracture parameters 
from independent tests2. Such a computation automatically accounts for the 
elastic-plastic wave interactions as well as the effect of void development 
on the intensity of the tensile stresses computed. Finally, a  was deter- 
mined by extrapolating curves of crack density versus the maximum tensile 
stress to the tensile stress corresponding to no cracking. The stress at no 
cracking was assumed to be a 

no 

Crack morphology was examined at each strength level to aid in interpret- 
ing the results of the threshold determinations. 

III. RESULTS 

Microscopic observations revealed that failure invariably started at 
inclusions which either cracked or separated from the matrix. Eventually, 
cracks extended from these regions into the matrix. Clearly, there are several 
distinct stages in the failure process, and nucleation can be described in 
several ways. Here, nucleation was associated with the beginning of the 
crack extensions into the steel matrix. 

Graphs of the crack densities versus stress are shown in Figure 1 for 
the thermomechanical treatments corresponding to yield stresses of 0.65 and 
1.02 GPa. It can be seen that the curves based on the tensile and compressive 

400 r- 

- MAXIMUM COMPRESSIVE  STRESS 
— MAXIMUM  TENSILE  STRESS 

(COMPUTED WITH THE PUFF COMPUTER 
CODE & BFRACT SUBROUTINE) 

HUGONIOT  ELASTIC  LIMIT 

o-y. 1.02 GPo 

•1.65 GPa 

GIOAPASCALS 

Figure 1.  Crack density dependence on stress. Symbols with 
the same shape correspond to the same test. 

+L. Seaman and D.  R.   Cuvvan,   "SRI PUFF 8 Computer Program for One-Bimensional 
Stress Wave Propagation," Ballistic Research Laboratory Contract Report 
No.   00420,  March 1980  (U). 



stresses do not extrapolate to the same no-damage levels. This is partly 
because there is insufficient cracking at stresses just above o  to get 
statistically significant crack densities.  Since cracking is activated by 
tensile, rather than compressive, stresses, ano was related to the tensile 
stress at which cracking began. A new result shown in Figure 1 is that ano 
decreases as a increases over the stress range investigated. 

The reason for this behavior is revealed by the appearance of the cracks 
Examples are shown in Figures 2 and 3.  It is readily seen in Figure 2 that 
when ay equals 1.02 GPa, the cracks tend to extend along the edges of inclu- 
sions and appear as fine lines in the matrix. They are typical sharp cracks. 
In contrast, there is approximately spherical void growth around the inclu- 
sions in the lower strength steel (ay =0.65 GPa) as shown in Figure 3. 
Eventually, matrix cracks form, but these are clearly nucleated with more 
plastic deformation than the cracks in the higher strength steel. 

X 
X 
%v 

V 

20^. m 

Figure 2. Sharp cracks at inclusion-matrix interfaces 
and in the steel matrix (ay = 1.02 GPa). 
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Figure 3. Approximately spherical void growth at inclusions. 
Vertical lines are shear cracks (aY = 0.65 GPa) . 

The nature of the cracking is further emphasized in Figure 4 where the 
data for the Ni-Cr steel and several other materials are shown along with 
curves that approximate bounding conditions for the development of failure.5"9 

5L. Seaman,  T.   W.  Barbee,  Jr. and D.   R.   Curran3   "Dynamic Fracture Criteria of 
Homogeneous Materials," Air Force Weapons Laboratory Technical Report No.   71- 
156,  February 1972  fU). 

&D.  A.  Shockey,  K.   C.  Dao and R.   L.  Jones,   "Effect of Grain Size on the Static 
and Dynamic Fracture Behavior of a-Titanium," Mechanisms of Deformation and 
Fracture,  K.   E.   Easterling,  Ed.,  Pergamon Press,   Oxford,   1979,  pp 77-85. 

7D.  R.   Curran and D.  A.   Shockey,   "Dynamic Fracture Criteria for Polycarbonate 
and Polyimide," Ballistic Research Laboratory Contract Report No.   91, March 
1973  (U). 

8L.^ Seaman and D.  A.  Shockey,   "Models for Ductile and Brittle Fracture for 'Rio- 
Dimensional Wave Propagation Calculations," Army Materials and Mechanics 
Research Center Contract Technical Report No.   75-2,  February 1975. 

SD.  A.  Shockey,  L.  Seaman and D.  R.   Curran,   "Dynamic Fracture of Beryllium 
Under Plate Impact and Correlation with Electron Beam and Underground Test 
Results," Air Force Weapons Laboratory Technical Report No.   73-12,  June 1973. 
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NUCLEATION THRESHOID STRESSES FOR FRACTURE 

Bounding Conditions for One-Dimensional Strain 

 A Sharp Crack Initiation at Yield 

■uy 'no   \\-2vl     Y 

••••©•••• Development of Perfectly Blunted (Spherical) Voids 

O'no- p+ fry 

• ■A Measured Nuclealion Stresses for Rolled Ni-Cr Steel 

Figure 4. Nucleation threshold stresses for fracture with 
stress waves. The curves bounding the possible 
threshold stresses correspond to the development 
of perfectly sharp and perfectly blunted cracks. 

The lower limit on threshold stresses for cracking was assumed to be the 
stress required to develop sharp cracks. This was approximated with the 
stress just sufficient to initiate plastic deformation.  For plane-strain 
conditions, as encountered in the plate-impact test, the stress C-Q in the 
direction of wave propagation required to initiate plastic flow is propor- 
tional to the yield strength of the standard tensile test and is given by the 
relation 

aii= o^vt1-2^- (1) 

This curve is shown in Figure 4 for a Poisson's ratio v of 0.27, and it is 
apparent that the threshold stresses for cracking in brittle materials in 
which sharp cracks form, i.e., Lexan, S-200 Be, Armco Fe and the Ni-Cr steel 
(a = 1.02 GPa), almost coincide with this line. Hence, increasing aY of the 
Ni-Cr steel above about 1 GPa should result in an increase in a^. 

An upper bound on the stress to initiate cracks was assumed to be the 
stress to develop a perfectly blunted crack, i.e., a spherical pore. Hill 
has shown that the hydrostatic pressure P required to enlarge a spherical 
void in an infinite elastic-perfectly plastic solid is given by 

C2aY/3)|l-ln[2aYCl/3K-l/4v)]l , (2) 



where K and \i  are the bulk and shear moduli, respectively. 0 The stress com- 
ponent a,, in the direction the stress wave propagates is 

a11 = P + (2/3)aY. (3) 

This is the stress component usually related to fracture with stress waves. 
When P is taken as the critical stress for void growth, aii = 0

no-    This is 
plotted in Figure 4 for average values of K and \i  for ductile materials and is 
identified as the upper bound on a  . Measured threshold stresses for the 
nucleation of voids in ductile materials (Al, Cu, apparently Ti and the Ni-Cr 
steel when ay = 0.65 GPa) are also shown in Figure 4, and these are in close 
agreement with the upper limit for a , i.e., the curve for perfectly blunted 
cracks. Since the critical condition for void growth is defined by the 
expression for P, the agreement between the data and the bounding curve is a 
quantitative indication that the initial approximately spherical void growth 
in ductile materials is governed by all the principal stress components rather 
than by a-, 1 alone. 

It is apparent that there is a maximum in the ano vs. Oy curve for the 
Ni-Cr steel at about 0.6 GPa because the limiting curve for perfectly blunted 
cracks is an increasing function of yield stress while in the interval 
0.60 £ ay £ 1>0 GPa the threshold stress for cracking the Ni-Cr steel is a 
decreasing function of yield stress. This maximum should be an important 
feature in the design and selection of tempered martensitic steels that must 
resist fracture due to stress waves. The implication is that for some loads 
there may be a tempering condition that will result in optimum fracture resist- 
ance. 

The data in Figure 1 are also helpful in establishing appropriate func- 
tions for the description of crack nucleation rates N.  Previous results have 
shown that at stresses appreciably greater than a  , N is approximately given 
by 

N = No exp (a11-ano)/a1 , (4) 

where N , ano and a-, are material parameters.  However, the graph shown in 
Figure 1 suggests tne behavior of the high-strength steel (a = 1.02 GPa) is 
actually consistent with3 

N = No|exp[(a11-ano)/a1]
1-25 -l}. (5) 

Hence, when a equals an0, the nucleation rate is zero and not N0. At stresses 
appreciably above a , Eq. 1 and the relation for N that has been used in the 
past are approximately the same. 

l0R.  Hill,  Plasticity,   Oxford University Press,   Oxford,   1950,  p 104. 
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IV.  CONCLUSIONS 

New features discovered about the fracture with stress waves of a quenched 
and tempered low-alloy 3Ni-lCr steel are as follows: 

1. At low stresses, the threshold stress ano for the nucleation of 
cracks with stress waves increases with increasing yield strength ay However, 
at approximately 0.65 GPa there is a maximum and at 1.02 GPa a minimum in the 
ano"aY curve- The quantitative dependence of ano on ay is given by the follow- 
ing relations. 

When ay is within the stress interval a* ^ ay ^ 0.65 GPa with the lower bound 
a* being the lowest stress that will form a spherical void, 

4   f   1 
a_„ = y Oy 1 - y £n 2oy no (k+ k)] ■ 

When 0.65 ^ aY ^ 1.02 GPa, 

a  = -1.71 av + 3.38. no        Y 

When aY ^ 1.02 GPa, 

a      = (1 - v) aY/(l - 2v) no i 

The stress corresponding to the lower bound a* is unknown, but crack blunting 
should not be expected behavior for indefinitely low values of ay. Sharp cracks 
should be encountered when there is massive ferrite since ferrite is known to 
cleave. This condition should define a*. 

2. Intermediate behavior in which ano decreases as oy increases 
corresponds to a decrease in the degree of plastic blunting at crack tips as 
the yield strength increases. 

3. The nucleation rate at stresses near ano is given by 

N = No{exp [Ca11 - a^/aj 1'25  -l] 

when ay = 1.02 GPa. The above relation reflects a significant improvement in 
our understanding of the rate at which cracks nucleate at low stresses -- 
stresses in the vicinity of ano, and it should allow better quantitative pre- 
dictions of the damage due to fracture with stress waves. 

11 
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